Supporting Information for the article: **On the mechanism of palladium-catalyzed coupling of haloaryls to biaryls in water with zinc** / S. Mukhopadhyay *et al*.

Synthesis of 2b and 2d. The substituted biphenyls 4,4'-dimethylbiphenyl **2b** and 4,4'-ditrifluoromethylbiphenyl **2d** were similarly prepared. **2b**: isolated yield 51% based on **1b**, mp 119 °C (from CH₂Cl₂) (lit., ¹⁸ 120.7-121.5 °C). Found: C, 91.60; H, 7.63. $C_{14}H_{14}$ requires C, 92.30; H, 7.69%. **2d**: isolated yield 69% based on **1d**, mp 80 °C (from EtOH/H₂O) (lit., ¹⁹ 93-94.5 °C). Found: C, 57.82; H, 2.90; F, 39.28. $C_{14}H_8F_6$ requires C, 57.93; H, 2.75; F, 39.31%. δ_H (CDCl₃; Me₄Si) 7.69 (8H, m, ArH) (lit., ²⁰ 7.67).

Experimental procedure for kinetic studies. Example: 44 mmol **1a**, 45 mmol Zn; 125 mmol NaOH, 5% Pd/C, 1 g (1.0 mol% Pd relative to **1a**), and 1.5 g PEG-400 (8.4 mol% relative to **1a**) were mixed in water (50 ml total reaction volume) at 100 °C in an autoclave. Reaction progress was monitored by GC. The following parameters were studied: (*i*) initial substrate concentration, using xylene as the diluting organic solvent (3 experiments at 1.76 M, $k_{\rm obs} = 3.8 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.999$ for 5 observations; 2.0 M, $k_{\rm obs} = 3.98 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.999$ for 5 observations; (*ii*) catalyst loading (5 experiments using 0.25 g of 5% w/v Pd, $k_{\rm obs} = 0.33 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.999$ for 7 observations; 0.5 g 5% w/v Pd, $k_{\rm obs} = 0.75 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.973$ for 7 observations; 0.75 g 5% Pd, $k_{\rm obs} = 1.46 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.88$ for 7 observations; 1.0g of 5% w/v Pd, $k_{\rm obs} = 3.67 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.996$ for 6 observations); and 1.5 g of 5% w/v Pd, $k_{\rm obs} = 4.09 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.996$ for 6 observations); (*iii*) Zn loading (4 experiments using 0.02 mol Zn, $k_{\rm obs} = 1.1 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.973$ for 5 observations; 0.045 mol, $k_{\rm obs} = 3.8 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.999$ for 5 observations; 0.05 mol, $k_{\rm obs} = 5.7 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.999$ for 5 observations; and 0.06 mol, $k_{\rm obs} = 8.9 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.91$ for 4 observations); and (*iv*) reaction temperature (4 experiments at 60 °C, $k_{\rm obs} = 1.47 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.993$ for 7 observations; 80 °C, $k_{\rm obs} = 2.48 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.998$ for 7 observations; and 120 °C, $k_{\rm obs} = 8.22 \times 10^{-2} \, {\rm min^{-1}}$, $r^2 = 0.986$ for 7 observations).

References:

- 17. McKillop, A.; Elsom, L. F.; Taylor, E. C. *Tetrahedron*, **1970**, *26*, 4041.
- 18. *Dictionary of Organic Compounds*; 6th ed., Chapman and Hall: London, 1996, vol. 1, p. 899.
- 19. Trost B. M.; Arndt, H. C. J. Am. Chem. Soc., 1973, 95, 5288.